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Abstract
In this paper, we present a systematical account of the descending procedure
from the six-vertex model to the N-state chiral Potts model through fusion
relations of τ (j)-operators, following the works of Bazhanov–Stroganov and
Baxter–Bazhanov–Perk. A careful analysis of the descending process leads
to the appearance of the high genus curve as the rapidity constraint for the
chiral Potts models. Full symmetries of the rapidity curve are identified, as is
its symmetry group structure. By normalized transfer matrices of the chiral
Potts model, the τ (2)T relation can be reduced to functional equations over a
hyperelliptic curve associated with rapidities, by which the degeneracy of τ (2)-
eigenvalues is revealed in the case of the superintegrable chiral Potts model.

PACS numbers: 05.50.+q, 02.30.Gp
Mathematics Subject Classification: 14H45, 14Q05, 82B23

1. Introduction

The purpose of this paper is to revisit the known facts on the N-state chiral Potts model as
a descendant of the six-vertex model and functional relations in the chiral Potts model. The
discussion will mainly be based on two notable papers [14, 15] in this recently discovered
solvable lattice model (for ‘descendants’ of a more general class of vertex models, see a recent
work of Baxter [12]). The formulae appearing in this work are to a large extent borrowed from
[14], and extensive use is also made of Baxter’s other works. Hence, the present paper lays
no claim to deep originality. In a way, our motivation is an attempt at better understanding
the significance behind many identities in Baxter’s papers, and clarifying the mathematical
content of formulae appeared in [14]. However, after the analysis is made on the descending
procedure, our effort leads to the appearance of the chiral Potts rapidity constraint in a natural
way from the viewpoint of the descendant of the six-vertex model. Afterwards, we proceed
to determine all symmetries of the rapidity curve, of which the large finite symmetry group
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structure has been widely believed for its role in solvability of the model; we further explore
the degenerate eigenvalues of the six-vertex model through the chiral Potts transfer matrices,
as an analogy to the discussion in [19] for the eight-vertex model for the root of unity cases.
We therefore hope that the reader will still find our presentation to be of independent interest.

In the study of the two-dimensional solvable N-state chiral Potts model (for a brief
history, see e.g., [22] section 4.1 and references therein), ‘rapidities’ of the statistical model
are described by elements [a, b, c, d] in the projective 3-space P3 satisfying the following
equivalent sets of equations:

W :

{
kaN + k′cN = dN

kbN + k′dN = cN ⇐⇒
{
aN + k′bN = kdN,

k′aN + bN = kcN,
(1)

where k, k′ are parameters with k2 + k′2 = 1, and k′ �= ±1, 0. The above relations define W as
an algebraic curve of genus N3 − 2N2 + 1, which will be called the rapidity curve throughout
this paper. For simplicity, we shall confine our discussion of chiral Potts models only on
the full homogeneous lattice by taking p = p′ in [14]. Note that a generalized column-
inhomogeneous τ2(tq) model and its corresponding row-to-row transfer matrix functional
relations without the conditions (1) have recently been discussed by Baxter in [13].

It is known in [15] that when descending the six-vertex model to the N-state chiral Potts
model, one first solves the Yang–Baxter RLL relation of the six-vertex model to obtain the
L-solution with operator entries acting on the ‘quantum space’ CN (in the terminology of the
quantum inverse scattering method, see e.g., [18, 20]), and with parameters depending on an
arbitrary 4-vector ratio p = [a, b, c, d] ∈ P3 (for the explicit form, see formulae (6), (7) of
this paper). The trace of the L-operator gives rise to a commuting family of operators τ (2)

p (t)

for t ∈ C. Our attempt is to search certain principles which impose the rapidity constraint
(1) for the chiral Potts model through descending processes from the six-vertex model. By
examining the formulae of functional relations involved in the chiral Potts transfer matrices
Tp(q) in [14], we observe that the fusion relations of τ

(j)
p -operators, which are induced from

τ (2)
p , are equivalent to the rapidity constraint (1) on p. Then we go on to clarify all symmetries

of the curve (1) and identify the structure of the automorphism group Aut(W) through three
hyperelliptic curves of genus (N − 1) associated with W. One such hyperelliptic curve is
defined by the variables t = ab

cd
, λ = dN

cN with the relation

Wk′ : tN = (1 − k′λ)(1 − k′λ−1)

k2
. (2)

By normalizing the transfer matrices Tp(q) as in [6], the T T̂ and τ (2)T relations on W can be
reduced to functional equations of operators on Wk′ . Then by using the (t, λ)-variable form of
the τ (2)T relation derived in this paper (which to the best of our knowledge has not previously
appeared in the literature), we are able to show that the degeneracy of τ (2)

p -eigenvalues appears
when p is the superintegrable element, in analogy to the discussion of the T–Q72 relation for
the eight-vertex model in [19].

The remainder of this paper is organized as follows. In section 2, we begin our discussion
by briefly reviewing the rapidities and Boltzmann weights of the N-state chiral Potts model
in the literature (e.g., [1, 4]). In section 3, we start with a solution τ (2)

p of the Yang–Baxter

equation of the six-vertex model with the parameter p ∈ P3 in [15], then define τ
(j)
p -operators

for 0 � j � N through fusion relations, which originally appeared in the study of chiral Potts
models in [14]. A careful analysis of the fusion relations of τ

(j)
p , the constraint of p in rapidity

curve W, naturally arises as a consequence of these relations. In section 4, we briefly review
the results in [14] about the chiral Potts transfer matrices Tp(q) for p, q ∈ W, τ (2)T and T T̂

relations, and their connections with τ
(j)
p . In this way, our τ (j)-fusion approach to the rapidity
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curve in the previous section can be better understood by the original source we are basing
upon. In section 5, we first recall the relation of the rapidity curve of N-state chiral Potts model
and three hyperelliptic curves of genus (N − 1) with DN -symmetry in [7, 25]. Through this,
we determine the full symmetries of the rapidity curve and its group structure. In particular,
the symmetries that have already appeared in the literature (e.g., in [3, 4, 9]) exhaust all the
symmetries of rapidities of the N-state chiral Potts model, and the order of the symmetry
group Aut(W) is equal to 4N3. In section 6, by using the normalized operator Vp(tq, λq) of
Tp(q) as in [6], we reduce the τ (2)T and T T̂ relations from W to functional equations on the
hyperelliptic curve Wk′ in (2). Note that the (t, λ)-form of T T̂ relations was previously used
in the effective discussions of ‘ground-state’ energy [6] and the excitation spectrum [23], both
in the thermodynamic limit of an infinite lattice. Using the (t, λ)-form of the τ (2)T relation,
one can see the degenerate τ (2)

p -eigenvalues from the Vp-eigenvalues in the superintegrable
case. We close in section 7 with some concluding remarks.

Notation. To present our work, we prepare some notation. In this paper, Z, R, C will denote
the ring of integers, real, complex numbers, respectively, ZN = Z/NZ and i = √−1. For
N � 2, we fix the Nth root of unity,

ω = e
2π i
N ,

and CN is the vector space consisting of all N-cyclic vectors with the basis {|n〉}n∈ZN
. For a

positive integer n, we denote by ⊗n CN the tensor product of n copies of the vector space CN .

2. The rapidity curve of the N-state chiral Potts model

Let X,Z be the operators of CN defined by X|n〉 = |n + 1〉, Z|n〉 = ωn|n〉 for n ∈ ZN .
Then X,Z satisfy the Weyl relation and Nth-power identity property: XZ = ω−1ZX,
XN = ZN = 1.

We shall denote the 4-vector ratio by [a, b, c, d] for a non-zero vector (a, b, c, d) ∈ C4.
The collection of all 4-vector ratios is the projective 3-space P3. Hereafter, we shall always use
the variables x, y, µ to denote the following component ratios of an element [a, b, c, d] ∈ P3,

x := a

d
, y := b

c
, µ := d

c
. (3)

Then x, y, µ can be considered as affine coordinates of P3. From now on, we shall denote
elements in P3 simply by p, q, r, . . . , etc. The coordinates of an element, say p, will be written
in the forms ap, bp, xp, . . . so on, whenever it is necessary to specify the element p.

It is known that the rapidities of the N-state chiral Potts model form the projective curve
W (1) in P3. In terms of the affine coordinates (x, y, µ) in (3), an equivalent form of defining
equations for W is given by

kxN = 1 − k′µ−N, kyN = 1 − k′µN, (x, y, µ) ∈ C3. (4)

Define

eiθp = e
−π i
N yp, eiφp = xp, up = N(θp + φp)

2
, vp = N(θp − φp)

2
.

By eliminating the valuable µN in (4), W becomes an N-fold unramified cover of the genus
(N − 1)2 curve,

xN + yN = k(1 + xNyN) (equivalently, sin vp = k sin up). (5)
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The Boltzmann weights Wp,q,Wp,q of the N-state chiral Potts model are defined by the
coordinates of p, q ∈ W with the expressions

Wp,q(n)

Wp,q(0)
=

n∏
j=1

dpbq − apcqω
j

bpdq − cpaqωj

×
=

(
µp

µq

)n n∏
j=1

yq − ωjxp

yp − ωjxq

=
(

cos N(θq − φp)/2

cos N(θp − φq)/2

) −n
N

n∏
j=1

sin
(−θq+φp

2 + π(2j−1)

2N

)
sin
(−θp+φq

2 + π(2j−1)

2N

)
 ,

Wp,q(n)

Wp,q(0)
=

n∏
j=1

ωapdq − dpaqω
j

cpbq − bpcqωj

×
= (µpµq)

n

n∏
j=1

ωxp − ωjxq

yq − ωjyp

=
(

sin N(φq − φp)/2

sin N(θp − θq)/2

) −n
N

n∏
j=1

sin
(φq−φp

2 + π(j−1)

N

)
sin
( θp−θq

2 + π(j−1)

N

)


(see, e.g., [2]). By the rapidity constraint (1), the above Boltzmann weights have the
N-periodicity property for n. Equivalently, Boltzmann weights are represented by two cyclic
vectors, (Wp,q(n))n∈ZN

and (Wp,q(n))n∈ZN
, of CN with the ratio conditions:

Wp,q(n)

Wp,q(n − 1)
= dpbq − apcqω

n

bpdq − cpaqωn
,

Wp,q(n)

Wp,q(n − 1)
= ωapdq − dpaqω

n

cpbq − bpcqωn
.

For convenience, we shall assume Wp,q(0) = Wp,q(0) = 1 without loss of generality.

3. Six-vertex model and fusion relations of τ j

By a remarkable paper [15], Bazhanov and Stroganov found that with each element
[a, b, c, d] ∈ P3, there is associated a solution G(t) of the Yang–Baxter (YB) relation for
the six-vertex model in terms of the operators X,Z. In the terminology of the quantum inverse
scattering method, G(t) is put into the following 2×2 matrix form with operator entries acting
on ‘quantum space’ CN ,

b2G(t) = b2

(
G0,0 G0,1

G1,0 G1,1

)
=
(

b2 − td2X (bc − ωadX)Z

−t (bc − adX)Z−1 −tc2 + ωa2X

)
, t ∈ C, (6)

and satisfies the YB relation

R(t/t ′)(G(t)
⊗
aux

1)(1
⊗
aux

G(t ′)) = (1
⊗
aux

G(t ′))(G(t)
⊗
aux

1)R(t/t ′), (7)

where R(t) is the following matrix1 of 2-tensor of ‘auxiliary space’ C2,

R(t) =


tω − 1 0 0 0

0 t − 1 ω − 1 0
0 t (ω − 1) ω(t − 1) 0
0 0 0 tω − 1

 .

1 The YB-relation solution G(t) we describe here is in accordance with discussions in section 4 of [14], which will
be briefly reviewed in section 4 of the present paper. Consequently, the R-matrix R(x) in our content is required
to vary the form appearing as (2.1) in [15]. Indeed, its entries are the Boltzmann weights of the six-vertex model
described in (5) of [13], also previously discussed in [24].
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By the auxiliary-space matrix product and quantum-space tensor product, the operator of a
finite size L,

L⊗
j=1

Gj(t) = G1(t)
⊗

· · ·
⊗

GL(t), Gj (t) := G(t), (8)

again satisfies the YB relation (7), hence the traces,traux

 L⊗
j=1

Gj(t)


t∈C

,

form a family of commuting operators of ⊗L CN . As Gj(t) depends on the parameter
p = [a, b, c, d] ∈ P3, it will be written by Gp,j (t) as well. Define the τ (2)

p -operator by

τ (2)
p (t) = traux

 L⊗
j=1

Gp,j (ωt)

 for t ∈ C, (9)

which again form a commuting family of operators acting on ⊗L CN for an arbitrary given
p ∈ P3. The spin-shift operator of ⊗L CN will be denoted by X

(
:=⊗L

j=1 Xj

)
, which has

the eigenvalues ωQ for Q ∈ ZN . In the study of chiral Potts transfer matrices in [14], there
are families of operators, τ

(j)
p for 0 � j � N , constructed from the τ (2)

p -family (9) by setting
τ (0)
p (t) = 0, τ (1)

p (t) = I , and the following ‘fusion relations’ (see (4.27) of [14]):

τ (j)
p (t)τ (2)

p (ωj−1t) = z(ωj−1t)Xτ (j−1)
p (t) + τ (j+1)

p (t), 1 � j � N, (10)

τ (N+1)
p (t) := z(t)Xτ (N−1)

p (ωt) + u(t)I (11)

with z(t) := (ωµ2
p(xpyp−t)2

y4
p

)L
, u(t) := αp(λ) + αp(λ−1) where t, λ are related by (2), and

αp(λ) =
(

k′(1 − λpλ)2

λ(1 − k′λp)2

)L
=

((
yN

p − xN
)(

tNp − tN
)

y2N
p

(
xN

p − xN
) )L

if p ∈ W

 . (12)

Note that αp(λ) + αp(λ−1) can be expressed as a polynomial of λ + λ−1, hence a polynomial
of tN .

By (10), one can express τ
(j)
p (t) for j > 2 as a ‘polynomial’ of τ (2)

p of degree (j − 1)

with coefficients in powers of X, e.g.,

τ (3)
p (t) = τ (2)

p (t)τ (2)
p (ωt) − Xz(ωt),

τ (4)
p (t) = τ (2)

p (t)τ (2)
p (ωt)τ (2)

p (ω2t) − Xz(ωt)τ (2)
p (ω2t) − Xτ(2)

p (t)z(ω2t),

τ (5)
p (t) = τ (2)

p (t)τ (2)
p (ωt)τ (2)

p (ω2t)τ (2)
p (ω3t) − Xz(ωt)τ (2)

p (ω2t)τ (2)
p (ω3t)

−Xτ(2)
p (t)z(ω2t)τ (2)

p (ω3t) − Xz(ω3t)τ (2)
p (t)τ (2)

p (ωt) + X2z(ωt)z(ω3t).

Indeed, by induction argument one can show the following expressions of τ
(j)
p (t) for

2 � j � N + 1 in terms of τ (2)
p and X:

τ (j)
p (t) =

j−2∏
s=0

τ (2)
p (ωj t) +

[ j−1
2 ]∑

k=1

(−X)k
∑

1�i1<′i2<′ ···<′ik�j−2

×
k∏

�=1

(
z(ωi� t)

τ
(2)
p (ωi�−1t)τ

(2)
p (ωi� t)

j−2∏
s=0

τ (2)
p (ωj t)

)
(13)
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where the notation i� <′ i�+1 means i� + 1 < i�+1. Therefore, τ
(j)
p (t) commutes with τ

(j ′)
p (t ′)

for all j, j ′, t, t ′. However (11) imposes the constraint of τ (2)
p (t), hence on p, of which the

condition will be clear later on.
Using (13), one obtains the following relations:

τ (N+1)
p (t) =

N−1∏
s=0

τ (2)
p (ωst) +

[ N
2 ]∑

k=1

(−X)k
∑

1�i1<′i2<′ ···<′ik�N−1

×
k∏

�=1

(
z(ωi� t)

τ
(2)
p (ωi�−1t)τ

(2)
p (ωi� t)

N−1∏
s=0

τ (2)
p (ωst)

)
;

−z(t)Xτ (N−1)
p (ωt) =

[ N
2 ]∑

k=1

z(t)(−X)k
∑

0=i1<′i2<′ ···<′ik�N−2

×
k∏

�=1

(
z(ωi� t)

τ
(2)
p (ωi�−1t)τ

(2)
p (ωi� t)

N−2∏
s=1

τ (2)
p (ωst)

)
.

By which the relations (10) and (11) give rise to the functional equation of τ (2)
p (t):

F
τ

(2)
p

(t) = u(t)I, (14)

where F
τ

(2)
p

(t) is defined by

F
τ

(2)
p

(t) :=
N−1∏
s=0

τ (2)
p (ωst) +

[ N
2 ]∑

k=1

(−X)k
∑
Ik∈Ik

∏
i∈Ik

(
z(ωit)

τ
(2)
p (ωi−1t)τ

(2)
p (ωit)

N−1∏
s=0

τ (2)
p (ωst)

)
, (15)

with the index set Ik consisting of subsets Ik of ZN with k distinct elements such that i �≡ i ′ + 1
(mod N) for all i, i ′ ∈ Ik . For example, for N = 2, 3, 4 (15) is given by

N = 2, F
τ

(2)
p

(t) = τ (2)
p (t)τ (2)

p (−t) − (z(t) + z(−t))X;

N = 3, F
τ

(2)
p

(t) =
2∏

j=0

τ (2)
p (ωj t) −

 2∑
j=0

z(ωj t)τ (2)
p (ωj+1t)

X;

N = 4, F
τ

(2)
p

(t) =
3∏

j=0

τ (2)
p (ωj t) −

 3∑
j=0

z(ωj t)τ (2)
p (ωj+1t)

X

+ (z(t)z(ω2t) + z(ωt)z(ω3t))X2.

The functional equation (14) for τ (2)
p (t), equivalently the relations (10) and (11), naturally

imposes the constraint on p, and it turns out to be the requirement of p as an element in the
rapidity curve W. Indeed, we have the following characterization of W.

Theorem 1. For p ∈ P3, the relation (14) of τ (2)
p (t) for L = 1 is equivalent to p being an

element of the rapidity curve W.

Proof. We now consider the relation (14) only for L = 1. By (6) and the expression of u(t)

in (11), we have

τ (2)
p (t) = y−2

p

(
µ2

p

(
ωx2

p − ωt
)
X +

(
y2

p − ωt
)
I
)
,

u(t) = (1 + k′2)
(
1 + µ2N

p

)− 4k′µN
p(

1 − k′µN
p

)2 − (1 − k′2)
(
1 + µ2N

p

)(
1 − k′µN

p

)2 tN .
(16)
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We are going to derive an explicit form of (15) for L = 1. By the invariant property under
t 
→ ωt ,

∏N−1
j=0 τ (2)

p (ωj t) is expressed in powers of tN ; so is∑
Ik∈Ik

∏
i∈Ik

(
z(ωit)

τ
(2)
p (ωi−1t)τ

(2)
p (ωit)

N−1∏
s=0

τ (2)
p (ωst)

)
as the index set Ik is invariant under the translation by 1 (mod N). It is known that XN = I ,
and I,X, . . . , XN−1 form a set of linearly independent matrices. By (16), one has

N−1∏
j=0

τ (2)
p (ωj t) = c0(p, t) + cN(p, t) +

N−1∑
j=1

(
N

j

)
cj (p, t)Xj ,

and

(−X)k
∑
Ik∈Ik

∏
i∈Ik

(
z(ωit)

τ
(2)
p (ωi−1t)τ

(2)
p (ωit)

N−1∏
s=0

τ (2)
p (ωst)

)
= (−1)k|Ik|

N−k∑
j=k

(
N − 2k

j − k

)
cj (p, t)Xj

for 1 � k �
[

N
2

]
, where cj (p, t) := y−2N

p µ
2j
p

(
ωjx

2j
p y

2N−2j
p − tN

)
for 0 � j � N . Hence,

(15)L=1 has the following expression:

F
τ

(2)
p

(t) = (c0(p, t) + cN(p, t)) +

[ N
2 ]−1∑
j=1

(
j∑

k=0

(−1)k|Ik|
(

N − 2k

j − k

))
(cj (p, t)Xj

+ cN−j (p, t)XN−j ) + 2N−2[ N
2 ]−1

 [ N
2 ]∑

k=0

(−1)k|Ik|
(

N − 2k[
N
2

]− k

)
× (c[ N

2 ](p, t)X[ N
2 ] + cN−[ N

2 ](p, t)XN−[ N
2 ]
)
. (17)

Set p = s := [
√

t, yµ−1, µ−1, 1] in (17) with generic t, y, µ. By (16) one has τ (2)
s (t) =

(1 − ωy−2t)I , which implies F
τ

(2)
s

(t) is a scalar operator, equivalently, the coefficients of Xj

for 1 � j � N − 1 in (17) are all equal to zero. As cj (s, t) �= 0 for j � 1, one obtains the
following recurrence relations for |Ik|:

j∑
k=0

(−1)k|Ik|
(

N − 2k

j − k

)
= 0, j = 1, . . . ,

[
N

2

]
, (18)

by which (17) becomes the relation, F
τ

(2)
p

(t) = c0(p, t) + cN(p, t) for p ∈ P3. By (16) and
the expressions of c0(p, t) and cN(p, t), the functional relation (14)L=1 can be reduced to the
following equation involving only the scalar term:

y−2N
p

(
y2N

p + µ2N
p x2N

p − tN
(
1 + µ2N

p

))= (1 + k′2)
(
1 + µ2N

p

)− 4k′µN
p(

1 − k′µN
p

)2 − (1 − k′2)
(
1 + µ2N

p

)(
1 − k′µN

p

)2 tN .

Then it is easy to see that the above relation is equivalent to the relations: k2y2N
p = (1−k′µN

p

)2
and k2x2N

p = (1 − k′µ−N
p

)2
, i.e., p is an element of W by (4). �

Remark. (1) As to the numerical values of |Ik|, it is easy to see that |I1| = N and
|I2| = N(N−3)

2 . However, for k � 2, it seems a non-trivial task to obtain the explicit form of
|Ik| purely by the combinatoric method. Formula (18) provides a way to get the expression
of |Ik| by recurrent relations. However, it would be interesting to have a certain combinatoric
interpretation of (18).

(2) The fusion relations (10) and (11) were originally derived from the chiral Potts model
with p ∈ W, which we will recall in the next section, hence the relation (14) holds for any
site L when p ∈ W.
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4. The τ (2)T relation of the chiral Potts model

In this section, we recall the derivation of the fusion relations (10), (11) in the study of the
chiral Potts models in [14]. For the N-state chiral Potts model on a lattice of horizontal
size L with periodic boundary condition, the combined weights of intersection between two
consecutive rows give rise to the transfer matrix acting on ⊗L CN :

Tp(q)σ,σ ′ =
L∏

l=1

Wp,q(σl − σ ′
l )Wp,q(σl − σ ′

l+1), p, q ∈ W, (19)

where σ = (σ1, . . . , σL), σ ′ = (σ ′
1, . . . , σ

′
L) with σl, σ

′
l ∈ ZN . The Boltzmann weights satisfy

the star–triangle relation:
N−1∑
d=0

Wqr(b − d)Wpr(a − d)Wpq(d − c) = RpqrWpq(a − b)Wpr(b − c)Wqr(a − c)

with Rpqr = fpqfqr

fpr
and fpq = ( detN (Wpq(i−j))∏N−1

n=0 Wpq(n)

) 1
N [4, 21], which ensures the commutativity of

transfer matrices for a fixed p ∈ W:

[Tp(q), Tp(q ′)] = 0, q, q ′ ∈ W.

By (4), Tp(q) depends only on the values of (xq, yq), parametrized by the curve (5) for p
fixed. Hence, we shall also write Tp(q) by Tp(xq, yq) whenever it will be convenient. It is
easy to see that Tp(q) commutes with both the spin-shift operator X of ⊗L CN and the spatial
translation operator SR , which takes the j th column to the (j + 1)th one for 1 � j � L with
the identification L + 1 = 1. We denote

T̂p(q) = Tp(q)SR.

Now we describe the τ (2)T relation in [14, 15]2. By following the arguments in
section 4 of [14], one defines a 2 × 2 matrix, G(g′, g) = (G(g′, g)m,m′)m,m′=0,1, for two
vectors g =∑k g(k)|k〉, g′ =∑n g′(n)|n〉 ∈ CN by

G(g′, g) =
∑
n,k

g′(n)g(k)Gk
n, Gk

n := G(|n〉, |k〉)

where Gk
n for n, k ∈ ZN are given by (4.4), (3.37), (3.38) and (A.3) in [14]: Gk

n = 0 except
k = n, n − 1, and

Gn
n m,m′ = (−1)mω(m′−m)n+m

(
cp

bp

)m′+m

tmq ,

Gn−1
n m,m′ = (−1)m−1ω(m′−m)(n−1)+1

(
dp

bp

)2 (
ap

dp

)m′+m

t1−m′
q ,

where tq := xqyq . Hence, Gk
nm,m′ can be put in the form of a 2 × 2 matrix with the operator

valued acting on ‘quantum space’ CN . Indeed, one has the following expression:(
G0,0 G0,1

G1,0 G1,1

)
= G(ωtq)

where G(t) is defined in (6). For convenience, we shall hereafter denote the following
component ratios of p = [a, b, c, d] ∈ P3 by

t (= tp) := ab

cd
= xy, λ(= λp) := dN

cN
= µN.

2 τ
(2)
p (q), Tp(q) in this paper are the operators τ

(2)
k=0,q , Tq in [14], respectively.
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By (4), the variables (t, λ) = (tp, λp) for p ∈ W satisfy the relation (2), which defines a
hyperelliptic curve of genus N − 1. By (9), we have the commuting family τ (2)

p (tq) for a
given p ∈ W. The chiral Potts transfer matrices Tp(q) constructed from the τ (2)

p -family in
[14, 15] were along the line of the ‘T–Q relation’ developed in [5]. Apply the SL2-gauge
transform on the j th site Gj(ωtq) in (8) in the following manner:

Hj = P −1
j Gj (ωt)Pj+1, Pj = 1√

1 + r2
j

(
1 rj

−rj 1

)
, (PL+1 := P1),

then the trace remains the same, i.e., τ (2)
p (tq) = traux(

⊗
j Hj ). The choice of the Pj above

is made in searching some non-trivial kernel vector gj ∈ CN of Hj ;1,0 (the left lower entry
of Hj ) for each j so that one can construct Bethe-equation-type eigenvalues of τ (2)

p (tq). For

p, q ∈ W, one can solve rj , gj as follows: for each basis element β = ⊗j |βj 〉 ∈⊗L CN with
βj ∈ ZN , there is associated a set of solutions rj and the kernel vectors gj , given by (4.14),
(4.19a) in [14]:

r
β

j = ω1−βj−1xq, g
β

j (n) = yp
2Wp,Uq(n − βj−1)Wp,Uq(n − βj ), β0 := βL,

where U is the following automorphism of W:

U : W −→ W, [a, b, c, d] 
→ [ωa, b, c, d], ((x, y, µ) 
→ (ωx, y, µ)).

Furthermore, the vectors g
′β
j = Hj ;0,0

(
g

β

j

)
and g

′′β
j = Hj ;1,1

(
g

β

j

)
have the expressions

g
′β
j (n) = (yp − ωxq)(tp − tq)

xp − xq

Wp,q(n − βj−1)Wp,q(n − βj ),

g
′′β
j (n) = ωµ2

p(xp − ωxq)(tp − ωtq)

yp − ω2xq

Wp,U 2q(n − βj−1 − 1)Wp,U 2q(n − βj − 1),

(see (4.19b), (4.19c) in [14]). This implies

τ (2)
p (tq)

(⊗j g
β

j

) = ⊗j g
′β
j + ⊗j g

′′β
j .

By the expression of Tp(q) in (19), the above g
β

j (n), g
′β
j (n) and g

′′β
j (n) for all basis elements

β give rise to the following τ (2)T relation (4.20) in [14] (or (14) in [11]):

τ (2)
p (tq)Tp(ωxq, yq) = ϕp(q)Tp(xq, yq) + ϕp(Uq)XTp(ω2xq, yq), (20)

where

ϕp(q) :=
(

(yp − ωxq)(tp − tq)

y2
p(xp − xq)

)L

, ϕp(q) :=
(

ωµ2
p(xp − xq)(tp − tq)

y2
p(yp − ωxq)

)L

.

By which, one can express τ (2)
p (tq) in terms of Tp:

τ (2)
p (tq) = (ϕp(q)Tp(xq, yq) + ϕp(Uq)XTp(ω2xq, yq))Tp(ωxq, yq)

−1. (21)

The commutativity of Tp(q) ensures that τ (2)
p (tq) commutes with Tp(xq ′ , yq ′),[

τ (2)
p (tq), Tp(xq ′ , yq ′)

] = 0, for p, q, q ′ ∈ W.

The τ
(j)
p in (10), (11), with t = tq , are related to the transfer matrices Tp(q) by the following

T T̂ relations ((3.46) for (l, k) = (j, 0) in [14], or (13) in [11]):

Tp(xq, yq)T̂p(yq, ω
jxq) = rp,qhj ;p,q

(
τ (j)
p (tq) +

z(tq)z(ωtq) · · · z(ωj−1tq)

αp(λq)
Xjτ (N−j)

p (ωj tq)

)
(22)
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for 0 � j � N , where

rp,q =
(

N(xp − xq)(yp − yq)
(
tNp − tNq

)(
xN

p − xN
q

)(
yN

p − yN
q

)
(tp − tq)

)L

,

hj ;p,q =
(

j−1∏
m=1

y2
p(xp − ωmxq)

(yp − ωmxq)(tp − ωmtq)

)L

and αp(λq) is defined in (12). In particular, the relation (22) for j = N becomes

Tp(xq, yq)T̂p(yq, xq) =
(

Ny2N−2
p (yp − yq)(yp − xq)(
yN

p − yN
q

)(
yN

p − xN
q

) )L

τ (N)
p (tq) (23)

(see (4.39), (4.44) in [14]). Indeed, the operators τ
(j)
p were originally defined by the relation

(22) in [14], and the fusion relations of τ (j) were derived from (20) and (22) with the coefficient
z(t) in (11) satisfying z(tq) = ϕp(q)ϕp(q). Using (21) and (10), one can successively express

τ
(j)
p (q) for 1 � j � N + 1 in terms of Tp(q) ((4.34) in [14]):

τ (j)
p (q) = Tp(xq, yq)Tp(ωjxq, yq)

j−1∑
m=0

(ϕp(q)ϕp(Uq) · · · ϕp(Um−1q)ϕp(Um+1q) · · ·

×ϕp (Uj−1q)Tp(ωmxq, yq)
−1Tp(ωm+1xq, yq)

−1Xj−m−1). (24)

Then, by
∏N−1

j=0 ϕp(Ujq) = αp(λq) and
∏N−1

j=0 ϕp(Ujq) = αp

(
λ−1

q

)
, the relation (11)

automatically follows. In this way, one can interpret the expression of τ (2)
p in (21), or

equivalently the τ (2)T relation (20), as a τ (2)
p -solution of the functional equation (14) when p is

an element of W. By (23) and the Tp-expression of τ (N)
p (q) in (24), one obtains the functional

equation of chiral Potts transfer matrices Tp ((4.40) of [14]):

T̂p(yq, xq) =
N−1∑
m=0

Cm;p(q)Tp(xq, yq)Tp(ωmxq, yq)
−1Tp(ωm+1xq, yq)

−1X−m−1,

where

Cm;p(q) = ϕp(q)ϕp(Uq) · · · ϕp(Um−1q)ϕp(Um+1q) · · ·

×ϕp (UN−1q)

(
Ny2N−2

p (yp − yq)(yp − xq)(
yN

p − yN
q

)(
yN

p − xN
q

) )L

.

5. The symmetry group of chiral Potts rapidity curve and its relation with
hyperelliptic curves with DN -symmetry

It is known that the rapidities of the chiral Potts model have a large finite symmetry group.
In this section, we are going to identify the precise group structure of Aut(W). As in [9], we
consider the following automorphisms of W:

M(1) : [a, b, c, d] 
→ [ωa, b, c, ωd], (x, y, µ) 
→ (x, y, ωµ),

M(2) : [a, b, c, d] 
→ [ωa,ωb, c, d], (x, y, µ) 
→ (ωx, ωy,µ),

M(3) : [a, b, c, d] 
→ [
c, ω

1
2 d, ω

−1
2 a, ω−1b

]
, (x, y, µ) 
→ (

ωy−1, ωx−1, ω
−1
2 x−1yµ−1

)
,

M(4) : [a, b, c, d] 
→ [a, b, ω−1c, d], (x, y, µ) 
→ (x, ωy, ωµ),

M(5) : [a, b, c, d] 
→ [
d, ω

1
2 c, ω

−1
2 b, a

]
, (x, y, µ) 
→ (

x−1, ωy−1, ω
1
2 xy−1µ

)
,

R : [a, b, c, d] 
→ [b, ωa, d, c], (x, y, µ) 
→ (y, ωx,µ−1).

(25)
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Then one has

R = M(3)M(5) = M(2)M(5)M(3), R2 = M(2), M(3)2 = M(5)2 = M(4)N = 1.

The diagonal symmetries of coordinates of W are expressed by

U = M(1)M(2)M(4)−1
: [a, b, c, d] 
→ [ωa, b, c, d];

M(1)−1
M(4) : [a, b, c, d] 
→ [a, ωb, c, d];

M(4)−1
: [a, b, c, d] 
→ [a, b, ωc, d];

M(2)−1
M(4) : [a, b, c, d] 
→ [a, b, c, ωd].

Note that W/〈M(1)〉 is represented by the curve (5), of which for the N = 3 case, the Picard–
Fuch equation of periods and algebraic geometry properties of the theta function and the
Jacobian variety were investigated in detail in [16, 17, 21]. Denote

M(0) = M(1)M(2)M(4)−2
: [a, b, c, d] 
→ [ωa, b, ωc, d], equivalently,

(x, y, µ) 
→ (ωx, ω−1y, ω−1µ).

Among the three morphisms M(i) for i = 0, 1, 2, any two automorphisms generate a
Z2

N -group acting freely on W. Their quotient Riemann surfaces can be realized as members
in the following one-parameter family of hyperelliptic curves:

Wκ (= WN,κ) : T N = (1 − κ
)(1 − κ
−1)

1 − κ2
, (T ,
) ∈ C2,

where κ is a complex parameter �= 0,±1. For N � 3, the above family of curves is
characterized by the hyperelliptic curves of genus N − 1 with Z2 × DN symmetry group,
where DN is the dihedral group (see proposition 2 in [26]). The hyperelliptic involution is
given by

σ : (T ,
) 
→ (T ,
−1),

and DN is generated by the automorphisms θ, ι of order N, 2, respectively,

θ : (T ,
) 
→ (ωT ,
), ι : (T ,
) 
→
(

1

T
,

1 − κ


κ − 


)
.

It is known that the three N2-unramified quotients of W can be realized as the following
hyperelliptic curves ((25) in [25]):

Wk′ 
 W/〈M(0),M(1)〉, Wik′/k 
 W/〈M(1),M(2)〉, Wk 
 W/〈M(0),M(2)〉,
(26)

with the coordinate expression from W to hyperelliptic curves given by

W −→ Wk′ , [a, b, c, d] 
→ (t, λ) =
(

ab

cd
,
dN

cN

)
;

W −→ Wik′/k, [a, b, c, d] 
→ (Tr ,
r) =
(

ac

bd
,

idN

bN

)
;

W −→ Wk, [a, b, c, d] 
→ (Tl,
l) =
(

ω
1
2
bc

ad
,
dN

aN

)
,

(27)
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((4), (9), (11) in [25])3. The hyperelliptic curve Wκ can also be represented in the following
different form [25, 26]. By quotients of symmetries of Wκ , one has the following commutative
diagram of Riemann surfaces:

Wκ
�−→ P1 = Wκ/〈θ〉

↓ � ↓ π

Wκ/〈σ 〉 = P1 ψ−→ P1 = Wκ/〈θ, σ 〉
where �,ψ,�, π are the natural projections with the coordinate expressions:

�(T ,
) = λ, �(T ,
) = T , ψ(T ) = T N, π(
) = (1 − κ
)(1 − κ
−1)

1 − κ2
.

The (T ,
)-coordinates in Wκ of branch points for the projections � and � are given by

Branch points of � : (∞, 0), (∞,∞), (0, κ), (0, κ−1),

Branch points of � :

(
ω−j N

√
1 + κ

1 − κ
,−1

)
,

(
ω−j N

√
1 − κ

1 + κ
, 1

)
, 1 � j � N,

where N

√
1−κ
1+κ

:= N

√∣∣ 1−κ
1+κ

∣∣ e i
N

arg( 1−κ
1+κ

). Using the birational transformations,

w = κ

1 − κ2

(

 − 1




)
, 
 = 1

2κ
{(1 − κ2)(w − T N) + κ2 + 1},

one obtains the equivalent form of the curve Wκ in terms of (w, T )-variables,

Wκ : w2 =
(

T N − 1 − κ

1 + κ

)(
T N − 1 + κ

1 − κ

)
, (T ,w) ∈ C2.

Now we are able to determine all the symmetries of the rapidity curve W and its group structure
through the hyperelliptic curve Wik′/k . By (26) and (27), W is an unramified cover over Wik′/k

with the Z2
N -covering group 〈M(1),M(2)〉 via the map

ξ : W −→ Wik′/k, [a, b, c, d] 
→ (T ,
) =
(

ac

bd
,

idN

bN

)
,

by which the symmetries of Wik′/k can be lifted to automorphisms of W in the following
manner:

M(3) → σ ; M(4) → θ−1; R → ι · θ; M(5) → ι · θ · σ. (28)

Proposition 1. For N � 3, the automorphism group Aut(W) of W is generated by
M(j), 1 � j � 5, and we have the following exact sequence of groups:

1 −→ Z2
N −→ Aut(W) −→ Z2 × DN −→ 1.

As a consequence, the order of Aut(W) is equal to 4N3.

Proof. When k′
k

�= ±1, Aut(Wik′/k) is generated by σ, θ, ι with its structure isomorphic to
Z2 × DN [26]. As σ, θ, ι can be lifted to those of W via (28), one has the surjective group
homomorphism from Aut(W) onto Aut(Wik′/k) with the kernel isomorphic to Z2

N . Then the
result follows. When k′

k
= ±1, by replacing Wik′/k,M

(2) by Wk′ ,M(0), respectively, the same
argument again gives the conclusion for Aut(W). �
3 The variables (Tr , 
r ), (Tl ,
l) here and (tr , λ), (tl , λ) in equations (9), (11) of [25] are related by (Tr , 
r ) =
(t−1

r , ikλ
1−k′λ ), (Tl , 
l) = (ω

1
2 tl ,

−kλ
k′−λ

).
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6. The descended forms of τ (2)T and T T̂ relations on the hyperelliptic curve

In the study of chiral Potts models, for the Tp(q)-eigenvalue problem one reduces the operators
on W to those over Wk′ [6, 23]; while discussions of the order parameter problem of chiral
Potts models were conducted by using the curve Wik′/k [8–10]. In this section, we consider
only the formal case, and derive the functional equations on Wk′ corresponding to the τ (2)T

and T T̂ relations on W. By Tp(q) = Tp(xq, yq) and Wk′ = W/〈M(0),M(1)〉 in (26), for the
reduction of Tp(q) to an operator on Wk′ , one needs only to examine the effect of Tp(q) when
replacing q by M(0)(q). The relation is given by formula (2.40) in [14]:

Tp(ωxq, ω
−1yq) =

(
(yp − ωxq)(yp − ω−1yq)

µ2
p(ωxp − yq)(xp − xq)

)L

X−1Tp(xq, yq). (29)

In order to eliminate the scalar factor in the above right-hand side, a procedure of normalizing
Tp(xq, yq) was given in [6] via the function gp(q)gp(q), where gp, gp are functions on W

defined by

gp(q) :=
N−1∏
n=0

Wpq(n)

=
(

µp

µq

) (N−1)N

2
N−1∏
j=1

(
yq − ωjxp

yp − ωjxq

)N−j
 ,

gp(q) := detN(Wpq(i − j))= N
N
2 e

π i(N−1)(N−2)

12

N−1∏
j=1

(tp − ωj tq)
j

(xp − ωjxq)j (yp − ωjyq)j
, by (2.44) in [14]

 .

One has

gp(q)gp(q) = N
N
2 e

π i(N−1)(N−2)

12

(
µp

µq

) (N−1)N

2
N−1∏
k=1

(xp − ωkyq)
k(tp − ωktq)

k

(xq − ωkyp)k(xp − ωkxq)k(yp − ωkyq)k
.

(30)

By µN
p

(
xN

p − xN
q

)(
xN

p − yN
q

) = µ−N
p

(
yN

p − xN
q

)(
yN

p − yN
q

)
, one obtains the following relation

for the function gg when changing the variable q to M(0)(q):

gp(M(0)q)gp(M(0)q) = (−1)N−1

(
(yp − ωxq)(yp − ω−1yq)

µ2
p(ωxp − yq)(xp − xq)

)N

gp(q)gp(q). (31)

By comparing the factors in (29) and (31), one leads to the operator

Vp(q) = S
−1
2

R Tp(q)/(gp(q)gp(q))
L
N , (32)

with the size L being only even for N even4. By XN = 1 and the relation between W and
Wk′ , the operator Vp(q)N depends only on the values of tq and λq , hence is defined on the
curve Wk′ . Up to Nth roots of unity, we may write Vp(q) simply by Vp(tq, λq). With the
same argument, one can see that

∏N−1
j=0 Vp(ωj tq, λq) depends on the values of tNq , λq , hence

becomes a function of the variable λq only. Indeed, by examining poles of the function, Baxter
obtained its precise form ((4) of [6]):

N−1∏
j=0

Vp(ωj tq, λq) = ηLλ
−(N−1)L

2
q αp(λq)

−(N−1)

2 S(λq), η := e
π i(N−1)(N+4)

12 , (33)

4 This requirement was not put in [6], but we add it here out of consideration of the factor (−1)N−1 in the
relation (31).
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where αp(λ) is given by (12), and S(λ) is a polynomial of λ of degree (N − 1)L. We shall
use the operator Vp(tq, λq) on Wk′ to describe the τ (2)T and T T̂ relations.

The T T̂ relations on Wk′ were already given in [6] as equation (8) there. For the self-
contained nature of this paper, we represent here a little more detailed derivation on the formula
by using (22). By (29), one has

T̂p(ωjyq, xq) =
(

1

µ
2j
p

j∏
k=1

(yp − ωkyq)(yp − ωj−kxq)

(ωxp − ωj+1−kxq)(xp − ωk−1yq)

)L

X−j T̂p(yq, ω
jxq),

by which (22) can be converted into the following form:

Tp(xq, yq)T̂p(ωjyq, xq) = rp,qhj ;p,q

(
j∏

k=1

(yp − ωkyq)(yp − ωj−kxq)

µ2
p(ωxp − ωj+1−kxq)(xp − ωk−1yq)

)L

×
(

X−j τ (j)
p (tq) +

∏j

k=1 z(ωk−1tq)

αp(λq)
τ (N−j)
p (ωj tq)

)
.

By (30), one can derive the identity

gp(q)gp(q)gp(Uj+1R−1q)gp

(
Uj+1R−1q

) = NNλN−1
p

(
xN

p − yN
q

)j
(yp − yq)

N(yp − xq)
N

e
π i(N−1)(N−2)

6
(
yN

p − yN
q

)N+j (
yN

p − xN
q

)N
×
(

j∏
k=1

(yp − ωkyq)
N

(xp − ωk−1yq)N(tp − ωk−1tq)N

) (
tNp − tNq

)j N−1∏
k=1

(tp − ωk+j tq)
2k.

Then by the relation

(rp,qhj ;p,q)
1
L

j∏
k=1

(yp − ωkyq)(yp − ωj−kxq)

µ2
p(ωxp − ωj+1−kxq)(xp − ωk−1yq)

= Ny
2j−2
p (yp − xq)(yp − yq)

(
tNp − tNq

)
ωjµ

2j
p

(
xN

p − xN
q

)(
yN

p − yN
q

) j∏
k=1

(yp − ωkyq)

(xp − ωk−1yq)(tp − ωk−1tq)
,

one has

(rp,qhj ;p,q)
N
L

(∏j

k=1
(yp−ωkyq )(yp−ωj−kxq )

µ2
p(ωxp−ωj+1−kxq )(xp−ωk−1yq )

)N
gp(q)gp(q)gp(Uj+1R−1q)gp(Uj+1R−1q)

= η2∏N−1
k=1

[
ωµ2

py−4
p (tp − ωj+ktq)2

]k
((

yN
p − xN

q

)(
tNp − tNq

)
y2N

p

(
xN

p − xN
q

) )N−j

.

By which, the T T̂ relations (22) become equation (8) of [6] in variables (t, λ),

αp(λ)
j

N ζ(ωj t)Vp(t, λ)Vp(ωj t, λ−1) = αp(λ)X−j τ (j)
p (t) +

(
j∏

k=1

z(ωk−1t)

)
τ (N−j)
p (ωj t),

where ζ(t) := η
−2L
N

∏N−1
k=1 z(ωkt)

k
N . In particular for j = 0, we have τ (N)

p (t) = ζ(t)Vp(t, λ)Vp

(t, λ−1). Then by (33), one arrives at formulae (11), (12) in [6],

S(λ)S(λ−1) = τ (N)
p (t)τ (N)

p (ωt) · · · τ (N)
p (ωN−1t),

Vp(t, λ)N = ηL

λ
(N−1)L

2 αp(λ)NS(λ−1)

N∏
j=1

(
αp(λ)X−j τ (j)

p (t) +

(
j∏

k=1

z(ωk−1t)

)
τ (N−j)
p (ωj t)

)
.

(34)
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By the commutativity of operators X, τ
(j)
p (t), Vp(t, λ) and S(λ), their eigenvalues again satisfy

the relations (10), (11), (34), regarded as scalar functions on Wk′ . By which, one can solve first
τ

(j)
p (t) by (10), (11), then by (34) obtain S(λ), hence eigenvalues of Vp(t, λ) (equivalently,

those of Tp(q)). All the above relations should in principle place one well on road to solving
the eigenvalue problem of chiral Potts model; however as (t, λ) are the ‘coordinates’ of a
higher genus curve Wk′ , it is still a difficult problem to extract explicit solutions for a finite
site L. Nevertheless, one can use these equations to obtain the maximum eigenvalues [6] in the
thermodynamic limit as L tends to ∞, as well as in the discussion of the excitation spectrum
in [23].

We now identify the (t, λ)-form of τ (2)T relation. By (30), the relation (20) becomes

y2L
p

(
N−1∏
k=1

(tp − ωk+1tq)
k

(ωxq − ωkyp)k(xp − ωk+1xq)k

) L
N

τ (2)
p (tq)Vp(ωtq, λq)

= (−ω)L

(
(xq − ω−1yp)N(tp − tq)

N

(xp − xq)N

N−1∏
k=1

(tp − ωktq)
k

(xq − ωkyp)k(xp − ωkxq)k

) L
N

×Vp(tq, λq) + (−ω)−L

(
λ2

p(xp − ωxq)
N(tp − ωtq)

N

(xq − ω−2yp)N

×
N−1∏
k=1

(tp − ωk+2tq)
k

(ω2xq − ωkyp)k(xp − ωk+2xq)k

) L
N

XVp(ω2tq , λq),

hence one has

y2L
p τ (2)

p (tq)Vp(ωtq, λq) =
(

(−1)NωN(N+1)/2
(
xN

q − yN
p

)(
tNp − tNq

)(
xN

p − xN
q

) ) L
N

Vp(tq, λq)

+ λ
2L
N
p (tp − ωtq)

2L

( (
xN

p − xN
q

)
(−1)NωN(N+1)/2

(
xN

q − yN
p

)(
tNp − tNq

)) L
N

XVp(ω2tq , λq).

By (−ω)NωN(N−1)/2 = −1 and (yN
p −xN

q )
(xN

p −xN
q )

= λpλq−1

λ−1
p λq−1

, we obtain the τ (2)V relation on the

variable (tq, λq) ∈ Wk′ for a fixed (tp, λp) ∈ Wk′ :(
1 − k′λp

k

) 2L
N

τ (2)
p (tq)Vp(ωtq, λq) =

((
λ2

pλq − λp

)(
tNp − tNq

)
λq − λp

) L
N

Vp(tq, λq)

+ (tp − ωtq)
2L

(
λpλq − λ2

p

(λpλq − 1)
(
tNp − tNq

)) L
N

XVp(ω2tq , λ). (35)

In particular, in the superintegrable case where λp = 1, tp = (
1−k′
1+k′
) 1

N , the relation (35)
becomes(

1 − k′

1 + k′

) L
N

τ (2)
p (tq)Vp(ωtq, λq) =

(
1 − k′

1 + k′ − tNq

) L
N

Vp(tq, λq)

+

((
1 − k′

1 + k′

) 1
N

− ωtq

)2L (
1 − k′

1 + k′ − tNq

) −L
N

XVp(ω2tq , λq).

Therefore, if τ (2)
p (tq) coupling with a function Vp(tq, λq) of Wk′ forms a solution of the

above relation, Vp

(
tq , λ

−1
q

)
is also a solution with the same τ (2)

p (tq). By the procedure of
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solving the eigenvalue Vp(tq, λq) in the chiral Potts model, Vp(tq, λq) is not invariant under
the change of λq to λ−1

q . Hence, the correspondence between the Vp-eigenvalues and the
τ (2)
p -eigenvalues is at least a 2–1 map. Therefore, the degeneracy of τ (2)

p -eigenvalues occurs
when p is the superintegrable element, an analogy to the discussion of the T–Q72 relation for
the eight-vertex model in [19].

7. Concluding remarks

In this paper, we made a clear mathematical derivation of the descending process from the
six-vertex model to the chiral Potts N-state model following the works [14, 15]. We start with
the Yang–Baxter solution (6) of the six-vertex model carrying an arbitrary 4-vector ratio p;
then reinterpret the descendant relation of the six-vertex model and chiral Potts model through
the fusion relations (10), (11) of τ

(j)
p , and finally reach the chiral Potts constraint (1) for the

rapidity p. The finding does suggest that studies of all τ (j)-families should be important for
understanding the mathematics in the chiral Potts transfer matrices. Although the operators
τ (j) in statistical mechanics are in many respects well understood physically, the mathematical
investigation on the fusion relations of these operators still lags behind. Certain interesting
topics are expected to arise by exploring deeper into their mathematical structures. From the
relations between the rapidity curve W and three genus (N − 1) hyperelliptic curves with
DN -symmetry, we determined the structure of Aut(W), hence all the symmetries of rapidities.
Through one of these hyperelliptic curves, Wk′ in (2), we obtain the reduced form (35) of the
τ (2)T relation on Wk′ , which is descended from W. Through this, we are able to indicate the
degeneracy of τ (2)

p -eigenvalues when p is a superintegrable point, a similar phenomenon for
the T–Q72 relation discussion of the eight-vertex model in [19]. The comparison is also one
of the motivations for our investigation in this paper. Further developments along this line are
now under consideration, and progress is expected.
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